
10/10/2019 Lecture+4.+Functions

file:///C:/Users/xavier.parent/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/lecture4/Lecture+4.+Functions.html 1/20

Introduction to programming.

Lecture 4
Handout freely adapted from material from Clément Guérin.

Raise exception
The command should be called like this :

 ()

It will immediately stop the code, write the line number where the command has been called and write
. It should be used to inform that the user is doing something that is not expected

although strictly speaking it is not forbidden by Python. You can use the raise keyword to signal that the
situation is exceptional to the normal flow.

Related to this is the $\textbf{Assert} statement

raise

raise NameError string

raise

NameError : string

Assert statement
Syntax

 condition :

 ,

If the condition is true, the program continue. If the condition is false, the program stops and throws an error.

The easiest way to think of an assertion is to liken it to a raise-if statement (or to be more accurate, a raise-if-
not statement).

Although very similar the two commands usually do not serve the same purpose. The first one is meant to
deal with the unexpected. The second one helps the programmer to have a better understanding of (and
control on) his/her code. For instance, you can use to check that a variable has an expected value.

if

 assert AsserionError string

In []:

while false:
 number = int(input("The table of which number do you want? "))
 if 9<number:
 raise ValueError("The number is greater than 9. Please do it again.")
 if 0<number<10:
 for i in range(1, 11):
 print(number,' x ',i,' = ',number*i,sep='')

10/10/2019 Lecture+4.+Functions

file:///C:/Users/xavier.parent/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/lecture4/Lecture+4.+Functions.html 2/20

In [146]:

#Example
def sendmoney(a):
 if 1000>a:
 print("the money has been sent")
 return a
 else:
 raise ValueError("Not enough money on your account")

sendmoney(500)

In []:

a=12
#b=0
b=9
print('the division a/b is equal to',)
assert b!=0, 'the denominator is null'
print(a/b)

Functions

Syntax

We have the following components:

Keyword marks the start of function header.
A function name my_function to uniquely identify it. Function naming follows the same rules of writing
identifiers in Python.
Arguments through which we pass values to a function. They are optional.
A colon (:) to mark the end of function header.
Optional documentation string (docstring) to describe what the function does. The command

(function_name) will return the text written there.
One or more python statements describing the instructions. Statements are all indented.This block of
text is called the of the function
An optional return statement to return a value from the function.

def

help

body

the money has been sent

Out[146]:

500

10/10/2019 Lecture+4.+Functions

file:///C:/Users/xavier.parent/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/lecture4/Lecture+4.+Functions.html 3/20

Calling a function
To call a function we simply type the function name with appropriate argument value(s)--sometimes called
actual parameter(s).

Argument data types
You can pass to a function any data types: string, number, list, dictionary etc. You can also pass to it another
function, even a method.

Default argument value
An argument can get a default value. If a function is called with an empty argument, this default value is used

Undefinite number of arguments
If you do not know how many arguments that will be passed into your function, add a * before the argument
name in the function definition. This way the function will receive a tuple of arguments, and can access the
items accordingly.

Return
Returns a value to the caller of the function. Two points to remember:

optional, but required if you want to reuse the output for something else
multiple values can be returned

Functions as parameters
It is possible to pass a function as argument to a function. This can give some extra freedom.

10/10/2019 Lecture+4.+Functions

file:///C:/Users/xavier.parent/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/lecture4/Lecture+4.+Functions.html 4/20

In []:

Example

def square(x):
 return x*x

square(2)

def add_number(x,y):
 """addition"""
 sum=(x+y)
 print(sum)
 return sum

add_number(1,2) # 1 and 2 are argument values

def find_max(a,b):
 """Find the max"""
 if(a > b):
 print(a,"is greater than",b)
 elif(b > a):
 print(b,"is greater than",a)

find_max(30, 45) #Here we call the function and pass two values as arguments
find_max(45, 30)

10/10/2019 Lecture+4.+Functions

file:///C:/Users/xavier.parent/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/lecture4/Lecture+4.+Functions.html 5/20

In []:

argument data types

def my_function(str1,str2): #string
 print(str1)
 print(str2)

my_function("I'm string 1", "I'm string 2")

def my_function(L1,L2): # lists
 print(L1)
 print(L2)

L1=['a','b','c']
L2=[1,2,3]
my_function(L1,L2)

def my_function(S1,S2): # sets
 print(S1)
 print(S2)

S1={1,2,3}
S2={1,2,2,3}
my_function(S1,S2)

def my_function(dico1,dico2): # dico
 print(dico1)
 print(dico2)
dico1={'Jean Paul':'jeanpaul@trucmuch.lu',\
 'Fanny':'fanny@trucmuch.lu',\
 'Robert':'robert@trucmuch.lu',\
 'Stephanie': (6812424239),\
 0:2}
dico2={0:7,'x':'x@trucmuch.lu'}

my_function(dico1,dico2)

def my_function(food):
 for x in food:
 print(x)

fruits = ["apple", "banana", "cherry"]

my_function(fruits)

In []:

Default argument value

def my_function(country = "Norway"): # I am defining a default value for the argument
 print("I am from " + country)

my_function("Sweden")
my_function("India")
my_function()
my_function("Brazil")

10/10/2019 Lecture+4.+Functions

file:///C:/Users/xavier.parent/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/lecture4/Lecture+4.+Functions.html 6/20

In []:

UNDEFINITE NUMBER OF ARGUMENTS

def adder(*num):
 sum = 0

 for n in num: ## for loop over the tuple elements
 sum = sum + n

 print("Sum:",sum)

adder(3,5)
adder(4,5,6,7)
adder(1,2,3,5,6)

def my_function(*kids):
 print("The youngest child is " + kids[2])

my_function("Emil", "Tobias", "Linus")

In []:

def first2items(list1):
 return list1[0], list1[1]

a, b = first2items(["Hello", "world", "hi", "universe"])
print(a + " " + b)
print(b + " " + a)

In []:

Passing a function as argument

def sum(val1,val2):
 return val1+val2

def prod(val1,val2):
 return val1*val2

def do_something(foo,val1,val2):
 return foo(val1,val2)

do_something(sum,3,4)
#do_something(prod,3,4)

10/10/2019 Lecture+4.+Functions

file:///C:/Users/xavier.parent/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/lecture4/Lecture+4.+Functions.html 7/20

Mutable vs immutable arguments
In Python, immutable objects are those whose value cannot be changed after assignment or initialization. If
you manage to change their value, it is not really a change, because you have in fact created a ''second''
object, with a new ID (a new memory address). Mutable objects are those whose value can be changed after
their assignment or initialization. When the value of a mutable variable is changed its memory is not
reallocated.

Numbers (integers, floats), strings and tuples are immutable. List, dict and set are mutable objects.

Depending on whether the given argument is mutable or not, you can modify it or not in the body of the
function. Depending on the type of the arguments the output of the function changes.

In []:

Non-mutable arguments

def incrementation(x,k): ## x becomes y and
 x+=k
 # return x
y=3
incrementation(y,10)# we try to change x into y
#y=incrementation(y,10) #To make it work we need to return a value and the assignment i
s there to store the value somewhere
y # we get 3 because of this

In []:

Mutable argument
def incrementation(x,k):
 x+=k
L=[1,'truc',3]
incrementation(L,[2])#creates a variable x which is equal to L then x+=[2]
L

In []:

Mutable argument--function that changes all values of a dictionnary to a single str
ing argument.

def change(dico,c):
 for key in dico.keys(): ## to loop trhough all the keys
 dico[key]=c ## to change the value of the key to c
dico={'k1' : 'truc', 'k2' : 'truc2'} ## example of a dictionary

change(dico,'othervalue') ## application of the function

Nested functions
A nested function is a function which is defined inside another function. The enclosing function is called the
outer or parent function, the nested function is called inner or child function. The inner function is "protected"
from the outside world, and it cannot be called from outside the outer function.

10/10/2019 Lecture+4.+Functions

file:///C:/Users/xavier.parent/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/lecture4/Lecture+4.+Functions.html 8/20

Recursive function
A recursive function is a function that calls itself (in its body).

A recursive function should not be confused with an iterative function. Recursion is the calling of a function by
itself one or more times in its body. There is iteration when a loop repeatedly executes until the controlling
condition becomes false.

Often an iterative function is more efficient.

Here are some examples.

In [6]:

Example 1

def outer(): #outer or parent function
 x=3
 def inner(): #inner or child function
 print(x)
 inner() # inner function called
#inner() # inner function cannt be called from the outside
a=outer()
print(a)

In [9]:

Example 2

def outer(): #outer or parent function
 x=3
 def inner(): #inner or child function
 y=4
 print(x+y)
 inner()
a=outer()
print(a)

3
None

7
None

10/10/2019 Lecture+4.+Functions

file:///C:/Users/xavier.parent/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/lecture4/Lecture+4.+Functions.html 9/20

In [150]:

def countdown(n):
 if n==0: # base case
 print("completed")
 else: # recursive case
 print(n)
 countdown(n-1) # recursive call

countdown(3)

In [2]:

def factorial(n):
 # print("factorial has been called with n = ",n,sep='')
 if n==1:
 return 1
 else:
 # print("intermediate result for ", n, " * factorial(" ,n-1, "): ",result,sep
='')
 return n*factorial(n-1)

factorial(4)

In []:

#The Fibonacci sequence is a sequence of numbers in which the nth number in
the sequence is obtained by adding the two previous numbers in the sequence.

def Fibo(n):
 "F(n)=F(n-1)+F(n-2), F(1)=F(0)=1"
 if n<0:
 raise ValueError("Fibonacci terms begin at 0") # without this, Fibo(-1) would r
un forever.
 elif n==0:
 return 1 # First initial case
 elif n==1:
 return 1 # Second initial case
 else:
 return Fibo(n-1)+Fibo(n-2) # Here is the recursive call

def FFibo(n):
 """calculate the number of calls of Fibo(n)"""
 return 2 * Fibo(n) - 1 ## 1999 paper by John Robertson

In []:

Fibo(500)
#FFibo(6)

3
2
1
completed

Out[2]:

24

10/10/2019 Lecture+4.+Functions

file:///C:/Users/xavier.parent/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/lecture4/Lecture+4.+Functions.html 10/20

In []:

[Fibo(n) for n in range(18)] # to display the Fibonacci sequence up to 18-th term as a
list

In []:

#Fiboiterative
def Fiboiter(n):
 if n<0:
 raise ValueError("Fibonacci terms begin at 0") # without this, Fibo(-1) would r
un forever.
 elif n==0:
 return 1 # First initial case
 elif n==1:
 return 1 # Second initial case
 else:
 x=1 #0 th element
 y=1 # 1th element
 for i in range(1,n):
 # x i-1-th element and y to be the i-th element
 x,y=y,x+y
 # x i-th element and y to be the i+1-th element
 return y

In []:

print(Fibo(10),"=",Fiboiter(10))

In []:

Fiboiter(500)
#FFiboiter(6)

In [5]:

Prints syracuse sequence for a given starting value k.
Syracuse sequence. First term is k, then calculate the following terms using the foll
owing formula:
i+1:=i/2 if i is even or 3xi+1 if i is odd. The sequence stops when 1 is returned
Example for k=1. Syracuse sequence is 0, 4, 2, 1

Syracuse sequence
def syr(k):
 """returns the Syracuse sequence itself as a list"""
 if k<=0:
 raise ValueError("Only for intergers")
 if k==1:
 return [1]
 else:
 if k%2==0:
 return [k] + syr(int(k/2))
 else:
 return [k] + syr(int(3*k+1))
def ssyr(k):
 """returns the position of 1 in the list"""
 return len(syr(k))-1

10/10/2019 Lecture+4.+Functions

file:///C:/Users/xavier.parent/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/lecture4/Lecture+4.+Functions.html 11/20

In [6]:

syr(7)

In [7]:

ssyr(7)

Scope of a variable
In Python, a variable name can be thought of as a reference to a value. When we do the assignment a = 2,
here 2 is an object stored in memory and a is the name we associate it with.

The scope is the part of the programme where the variable and its associated value can be accessed.

The rules are:

The scope of every variable declared outside the functions is global. This means the variable is visible
from anywhere in the programme.
Unless stated otherwise, the scope of every variable declared within a function is local (to that function).
Exceptions are when the keywords and are used. With we overwrite the
name binding initially made at the global level. With the keyword we overwrite the name
binding declared at the immediately higher level.
To determine in which order Python should access a variable and its associated value, you can use the
LEGB rule. LEGB rule stands for Local, Enclosed, Global, Built-in.

Example of built-in variable: underscore (), used to ignore the values. If you don't want to use specific values
while unpacking, just assign that value to underscore().

global nonlocal global

nonlocal

In [12]:

uderscore as a built-in variable

ignoring a value
a, _, b = (1, 2, 3) # a = 1, b = 3
print(a, b)

ignoring multiple values
*(variable) used to assign multiple value to a variable as list while unpacking
it's called "Extended Unpacking"
a, *_, b = (7, 6, 5, 4, 3, 2, 1)
print(a, b)

Out[6]:

[7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1]

Out[7]:

16

1 3
7 1

10/10/2019 Lecture+4.+Functions

file:///C:/Users/xavier.parent/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/lecture4/Lecture+4.+Functions.html 12/20

In []:

In the following examples, what will be printed?
what is the value of x after the call?
do we get error message?
x=2
def ExVar1():
 print(x)
def ExVar2():
 x=5
 #y=5
 print(x)
def ExVar3():
 print(x)
 x=5
 #y=5
def ExVar4():
 print(x)
 print('x=1')

In []:

ExVar1()
ExVar2() # global variables are protected--try with y=5 instead of x=5 in the function
ExVar3() #
ExVar4()

In [21]:

GLOBAL Changing the value of a global variable from inside the function using global

x = 0 # global variable

def add():
 global x
 x = x + 2 # increment by 2
 print("Inside the function, x is", x)

add()
print("Outside the function x is", x) # Is is still 0?

Inside add(): 2
In main: 2

10/10/2019 Lecture+4.+Functions

file:///C:/Users/xavier.parent/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/lecture4/Lecture+4.+Functions.html 13/20

In [32]:

NONLOCAL is restricted to the immediately higher level

x='grand-father' # global variable
def f1():
 x='daddy'
 print("Inside f1, x is", x)
 def f2():
 #global x
 nonlocal x
 print("Inside f2, x is", x)
 f2()
f1()

In [33]:

#Difference between global and non local keywords==overlap problem
def examplenothing():
 x='changedinexample'
 def insidenothing(): # inside... is a function only defined in the scope of exampl
e...
 x='changedinside' #x is not global within the scope of insidenothing.
 insidenothing()
 print("the x in example... is ",x)

def exampleglobal():
 x='changedinexample'
 def insideglobal():
 global x # x is understood as a global variable, here.
 x='changedinside'
 insideglobal()
 print("the x in example... is ",x)

def examplenonlocal():
 x='changedinexample'
 def insidenonlocal():
 nonlocal x # x is understood as a local variable of examplenonlocal
 x='changedinside'
 insidenonlocal()
 print("the x in example... is ",x)

Inside f1, x is daddy
Inside f2, x is grand-father

10/10/2019 Lecture+4.+Functions

file:///C:/Users/xavier.parent/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/lecture4/Lecture+4.+Functions.html 14/20

In [34]:

x='notchanged'
examplenothing() #x is not changed inside the first function
print("global x is ",x) # x is not changed globally
print(5*'-')
x='notchanged'
exampleglobal() #x is not changed inside the first function
print("global x is ",x) # x is changed globally
print(5*'-')
x='notchanged'
examplenonlocal() #x is changed inside the first function
print("global x is ",x) # x is not changed globally
print(5*'-')

One should not use with recursively defined functions. It leads to a SyntaxError.nonlocal

In [49]:

#Fibonacci sequence with a count of the number of recursive calls
t=0
def Fibo(n):
 "F(n)=F(n-1)+F(n-2), F(1)=F(0)=1"
 global t # Declare that t should be considered as global
 t+=1 # We do something on t
 if n<0:
 raise ValueError("Fibonacci terms begin at 0")
 elif n==0:
 return 1
 elif n==1:
 return 1
 else:
 print(t)
 return Fibo(n-1)+Fibo(n-2)

Could you evaluate how fast is the number of calls growing?
#t=0
Fibo(4)
#t

the x in example... is changedinexample
global x is notchanged

the x in example... is changedinexample
global x is changedinside

the x in example... is changedinside
global x is notchanged

1
2
3
7

Out[49]:

5

10/10/2019 Lecture+4.+Functions

file:///C:/Users/xavier.parent/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/lecture4/Lecture+4.+Functions.html 15/20

In [39]:

t=0
2*Fibo(5)-1

In [42]:

t

Adding a "help" comment to your function
If you want to add a sentence that will be printed when you call you should simply
add this sentence as a string to the first line of the body of the function. It does not do anything in the script.

help(yourfunction)

In [51]:

def nicelydocumented():
 "Unfortunately, it does not do much. It just returns True all the time." # Help com
ment.
 "This line is not seen" #This line won't be shown.
 return True

In [53]:

nicelydocumented

In [54]:

help(nicelydocumented)

1
2
3
4
8
11
12

Out[39]:

15

Out[42]:

15

Out[53]:

True

Help on function nicelydocumented in module __main__:

nicelydocumented()
 Unfortunately, it does not do much. It just returns True all the time.

10/10/2019 Lecture+4.+Functions

file:///C:/Users/xavier.parent/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/lecture4/Lecture+4.+Functions.html 16/20

Keywords argument(s)
When we call a function with some values, these values get assigned to the arguments according to their
position. These are called called positional arguments.

Python allows functions to be called using keyword arguments. Such arguments are passed as
"name=value" instead of just "value". When we call a function this way, the order (position) of the arguments
does not matter.

In [8]:

def greet(name, msg='goodbye'):
 """
 This function greets to
 the person with the
 provided message.

 If message is not provided,
 it defaults to "Good
 morning!"
 """

 print("Hello",name + ', ' + msg)

greet("John")
greet("Kate",'how you doing?')
greet("Bruce","How do you do?")

In [62]:

2 keyword arguments

greet(name = "Bruce",msg = "How do you do?")

#2 keyword arguments (out of order)
greet(msg = "How do you do?",name = "Bruce")

1 positional, 1 keyword argument
greet("Bruce", msg = "How do you do?")

In [55]:

print('c','g',sep="*",end=" ** ") #'c' is a positional argument whereas
 #'endofthe[...]printline' is a keyword argument for
the keyword 'end'.
print('g','c')

Hello John, goodbye
Hello Kate, how you doing?
Hello Bruce, How do you do?

Hello Bruce, How do you do?
Hello Bruce, How do you do?
Hello Bruce, How do you do?

c*g ** g c

10/10/2019 Lecture+4.+Functions

file:///C:/Users/xavier.parent/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/lecture4/Lecture+4.+Functions.html 17/20

In [64]:

def Displayingarguments1(a,b,c):#A simple example with only positional arguments
 "Displays the arguments, one on each line"
 print("positional argument a is ",a)
 print("positional argument b is ",b)
 print("positional argument c is ",c)

In [65]:

Displayingarguments1('yes',(1,2,3),'no') #As expected

In [66]:

Displayingarguments1(b='yes',a=(1,2,3),c='no')# You can call positional arguments as ke
yword arguments

In [69]:

#You need to give the good number of positional arguments
Displayingarguments1('yes',(1,2,3))

In [70]:

#You need to give the good number of positional arguments
Displayingarguments1('yes',(1,2,3),'no',3)

positional argument a is yes
positional argument b is (1, 2, 3)
positional argument c is no

positional argument a is (1, 2, 3)
positional argument b is yes
positional argument c is no

--
-
TypeError Traceback (most recent call las
t)
<ipython-input-69-a7f5462f25de> in <module>
 1 #You need to give the good number of positional arguments
----> 2 Displayingarguments1('yes',(1,2,3))

TypeError: Displayingarguments1() missing 1 required positional argument:
 'c'

--
-
TypeError Traceback (most recent call las
t)
<ipython-input-70-d707e9ecd5c4> in <module>
 1 #You need to give the good number of positional arguments
----> 2 Displayingarguments1('yes',(1,2,3),'no',3)

TypeError: Displayingarguments1() takes 3 positional arguments but 4 were
 given

10/10/2019 Lecture+4.+Functions

file:///C:/Users/xavier.parent/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/lecture4/Lecture+4.+Functions.html 18/20

In [72]:

#You cannot give two values to b
Displayingarguments1('yes',(1,2,3),'no',b=(1,2))

In [76]:

#No positional argumentation is allowed after a keyword argumentation
Displayingarguments1('yes',b=(1,2,3),'no')

In [80]:

def Displayingarguments2(a,b,c,kw1='defautkw1',kw2='defautkw2',kw3='defautkw3'):#An exa
mple with both positional
 #and ke
yword arguments
 "Displays the arguments, one on each line"
 print("positional argument a is ",a)
 print("positional argument b is ",b)
 print("positional argument c is ",c)
 print("keyword argument kw1 is ",kw1)
 print("keyword argument kw2 is ",kw2)
 print("keyword argument kw3 is ",kw3)

In [81]:

Displayingarguments2('yes',(1,2,3),'no','turn',3,'nothing') #Each argument is called as
a positional argument

--
-
TypeError Traceback (most recent call las
t)
<ipython-input-72-1764298375a0> in <module>
 1 #You cannot give two values to b
----> 2 Displayingarguments1('yes',(1,2,3),'no',b=(1,2))

TypeError: Displayingarguments1() got multiple values for argument 'b'

 File "<ipython-input-76-2a86d21a4f23>", line 2
 Displayingarguments1('yes',b=(1,2,3),'no')
 ^
SyntaxError: positional argument follows keyword argument

positional argument a is yes
positional argument b is (1, 2, 3)
positional argument c is no
keyword argument kw1 is turn
keyword argument kw2 is 3
keyword argument kw3 is nothing

10/10/2019 Lecture+4.+Functions

file:///C:/Users/xavier.parent/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/lecture4/Lecture+4.+Functions.html 19/20

In [82]:

Displayingarguments2('yes',(1,2,3),'no') #First three arguments called are positional,
 #other arguments are empty, and get their defa
ut values

In [83]:

Displayingarguments2('yes',(1,2,3),'no','turn', kw3='nothing') #3st three are called as
positional arguments
 #kw1 is called as a posi
tional argument
 #kw2 is given a defaut v
alue
 #kw3 is called as keywor
d argument

In [84]:

#Do not give keyword arguments before positional ones
Displayingarguments2('yes',(1,2,3),'no', kw3='nothing','turn')

In [117]:

def Displayingarguments3(a,b,c,kw):#An example with a mutable keyword argument.
 "Displays the arguments, one on each line"
 print("positional argument a is ",a)
 print("positional argument b is ",b)
 print("positional argument c is ",c)
 kw.append(1)
 print("keyword argument is ", kw)

In [118]:

Displayingarguments3(1,2,3,kw=[])# The defaut value of kw is changing!

positional argument a is yes
positional argument b is (1, 2, 3)
positional argument c is no
keyword argument kw1 is defautkw1
keyword argument kw2 is defautkw2
keyword argument kw3 is defautkw3

positional argument a is yes
positional argument b is (1, 2, 3)
positional argument c is no
keyword argument kw1 is turn
keyword argument kw2 is defautkw2
keyword argument kw3 is nothing

 File "<ipython-input-84-cd2f54d01c68>", line 2
 Displayingarguments2('yes',(1,2,3),'no', kw3='nothing','turn')
 ^
SyntaxError: positional argument follows keyword argument

positional argument a is 1
positional argument b is 2
positional argument c is 3
keyword argument is [1]

10/10/2019 Lecture+4.+Functions

file:///C:/Users/xavier.parent/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/lecture4/Lecture+4.+Functions.html 20/20

Yield
Yield is a keyword that is used like return, except the function will return a new object called . A
generator is an iterable, viz. you can go through its elements with a for loop. The difference is that the
generated values are not stored in memory, and are generated on the fly. Hence they can be used only once.

generator

In [145]:

def createGenerator():
 mylist = range(3)
 for i in mylist:
 yield i*i

mygenerator = createGenerator() # create a generator
print(mygenerator) # mygenerator is an object!
for i in mygenerator:
 print(i)

<generator object createGenerator at 0x0000020E28ADD2A0>
0
1
4

