Learning

Chapters 11 & 12
Outline

• Introduction
• Decision tree
• Minimum size decision tree
Introduction

A general model of learning agents

- Performance standard
- Critic
- Learning element
- Problem generator
- Performance element

Feedback:
- changes
- knowledge
Introduction

• Types of learning
 – **Supervised learning**
 • correct answers for each example
 – **Unsupervised learning**
 • correct answers not given
 – **Reinforcement learning**
 • occasional rewards

• Scope of this lecture: supervised learning
Introduction

• Type of learning (cont'd)
 – Inductive -- Use specific examples to reach general conclusions
 – Analogical -- Determine correspondence between two different representations
 – Etc.

• Focus of this lecture: inductive learning
Introduction

• Simplest form of inductive learning: learn a function from examples

\(f \) is the target function

An example is a pair \((x, f(x))\)

Problem: find a hypothesis \(h \)

such that \(h \approx f \)
given a training set of examples

(This is a highly simplified model of real learning:
 – Ignores prior knowledge
 – Assumes examples are given)
Introduction

- Construct/adjust h to agree with f on training set
- (h is consistent if it agrees with f on all examples)
- E.g., curve fitting:
Introduction

- Construct/adjust \(h \) to agree with \(f \) on training set
- \((h \) is consistent if it agrees with \(f \) on all examples)
- E.g., curve fitting:

![Plot showing curve fitting](image)
Introduction

• Construct/adjust \(h \) to agree with \(f \) on training set
• (\(h \) is consistent if it agrees with \(f \) on all examples)
• E.g., curve fitting:
Introduction

- Construct/adjust h to agree with f on training set
- (h is consistent if it agrees with f on all examples)
- E.g., curve fitting:
Introduction

- Construct/adjust h to agree with f on training set
- (h is consistent if it agrees with f on all examples)
- E.g., curve fitting:
Introduction

- Construct/adjust h to agree with f on training set
- (h is consistent if it agrees with f on all examples)
- E.g., curve fitting:

Ockham’s razor: prefer the simplest hypothesis consistent with data
Decision tree (1)

Construed by looking for regularities in data

- Input: a training set of positive and negative examples of a concept
 - Each example has a set of features/attributes
- Output: a tree-graph description, and eventually rules
- Useful for classifying whether future examples are positive or negative.
Problem: decide whether to wait for a table at a restaurant, based on the following attributes:

1. Alternate: is there an alternative restaurant nearby?
2. Bar: is there a comfortable bar area to wait in?
3. Fri/Sat: is today Friday or Saturday?
4. Hungry: are we hungry?
5. Patrons: number of people in the restaurant (None, Some, Full)
6. Price: price range ($, $$, $$$)
7. Raining: is it raining outside?
8. Reservation: have we made a reservation?
9. Type: kind of restaurant (French, Italian, Thai, Burger)
 - WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)
University of Irvine machine learning repository
http://mlr.cs.umass.edu/ml/

• Data sets repository
 – Received from different sources (health care database, census bureau center, etc)
 – Used to test the learning algorithms

• "Census Income" dataset
 – Prediction task is to determine whether a person makes over 50K a year.
 – Attributes: education; marital-status; occupation; race; sex; native-country; etc.
Decision tree (3)

- Examples described by attribute values (e.g. Boolean, discrete)
- E.g., situations where I will/won't wait for a table:

<table>
<thead>
<tr>
<th>Example</th>
<th>Alt</th>
<th>Bar</th>
<th>Fri</th>
<th>Hun</th>
<th>Pat</th>
<th>Price</th>
<th>Rain</th>
<th>Res</th>
<th>Type</th>
<th>Est</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>X₁</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>Some</td>
<td>$$$</td>
<td>F</td>
<td>T</td>
<td>French</td>
<td>0–10</td>
<td>T</td>
</tr>
<tr>
<td>X₂</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>Full</td>
<td>$</td>
<td>F</td>
<td>F</td>
<td>Thai</td>
<td>30–60</td>
<td>F</td>
</tr>
<tr>
<td>X₃</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>Some</td>
<td>$</td>
<td>F</td>
<td>F</td>
<td>Burger</td>
<td>0–10</td>
<td>T</td>
</tr>
<tr>
<td>X₄</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>Full</td>
<td>$</td>
<td>F</td>
<td>F</td>
<td>Thai</td>
<td>10–30</td>
<td>T</td>
</tr>
<tr>
<td>X₅</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>Full</td>
<td>$$$</td>
<td>F</td>
<td>T</td>
<td>French</td>
<td>>60</td>
<td>F</td>
</tr>
<tr>
<td>X₆</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>Some</td>
<td>$$</td>
<td>T</td>
<td>T</td>
<td>Italian</td>
<td>0–10</td>
<td>T</td>
</tr>
<tr>
<td>X₇</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>None</td>
<td>$</td>
<td>T</td>
<td>F</td>
<td>Burger</td>
<td>0–10</td>
<td>F</td>
</tr>
<tr>
<td>X₈</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>Some</td>
<td>$$</td>
<td>T</td>
<td>T</td>
<td>Thai</td>
<td>0–10</td>
<td>T</td>
</tr>
<tr>
<td>X₉</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>Full</td>
<td>$</td>
<td>T</td>
<td>F</td>
<td>Burger</td>
<td>>60</td>
<td>F</td>
</tr>
<tr>
<td>X₁₀</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>Full</td>
<td>$$$</td>
<td>F</td>
<td>T</td>
<td>Italian</td>
<td>10–30</td>
<td>F</td>
</tr>
<tr>
<td>X₁₁</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>None</td>
<td>$</td>
<td>F</td>
<td>F</td>
<td>Thai</td>
<td>0–10</td>
<td>F</td>
</tr>
<tr>
<td>X₁₂</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>Full</td>
<td>$</td>
<td>F</td>
<td>F</td>
<td>Burger</td>
<td>30–60</td>
<td>T</td>
</tr>
</tbody>
</table>

- Classification of examples is positive (T) or negative (F)
A decision tree is a tree where
- each non-leaf node is associated with an attribute (feature)
- each leaf node is associated with a classification (T or F, + or -, POS or NEG)
- each arc is associated with one of the possible values of the attribute at the node where the arc is directed from
Decision tree (5)

- One possible representation for hypotheses
- E.g., here is the full tree for deciding whether to wait:
Decision tree (6)

- Decision trees can express any function of the input attributes.
- E.g., for Boolean functions, truth table row → path to leaf:
Exercise

• Give decision trees to represent the following boolean functions:

 A \land \neg B

 A \lor [B \land C]

 [A \land B] \lor [C \land D]

 A \lor \neg A

 A \rightarrow (B \rightarrow A)

Any comments?
Minimum size decision tree (1)

- A decision tree helps identify an hypothesis consistent with the data
- But we said earlier that inductive learning looks for the simplest hypothesis
- In the present context, this means building the minimum size decision tree
- As you'll see, here things become tricky!
Minimum size decision tree (2)

• The key problem is choosing which attribute to split a given set of examples.
• Some possibilities are:
 – **Random**: Select any attribute at random
 – **Least-Values**: Choose the attribute with the smallest number of possible values (**fewer branches**)
 – **Most-Values**: Choose the attribute with the largest number of possible values (**smaller subsets**)
 – **Max-Gain**: Choose the attribute that has the largest expected information gain, i.e. select attribute that will result in the smallest expected size of the subtrees rooted at its children.
• The ID3 algorithm uses the **Max-Gain** method of selecting the best attribute.
Minimum size decision tree (3)

- ID3: A **greedy algorithm** for Decision Tree Construction developed by Ross Quinlan, 1987
- Consider a smaller tree a better tree
- Top-down construction of the decision tree by recursively selecting the "**best attribute**" to use at the current node in the tree, based on the examples belonging to this node.
 - Once the attribute is selected for the current node, generate children nodes, one for each possible value of the selected attribute.
 - Partition the examples of this node using the possible values of this attribute, and assign these subsets of the examples to the appropriate child node.
 - Repeat for each child node until all examples associated with a node are either all positive or all negative.
Choosing a good attribute

• Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

Splitting on *Patrons*? is a better choice

It is likely this will result in a less complex graph. Can you see why?
Minimum size decision tree (4)

- Decision tree obtained using the ID3 algorithm

- Substantially simpler than “true” tree---a more complex hypothesis isn’t justified by small amount of data
Entropy

• Given an arbitrary categorization, C into categories c1, ..., cn, and a set of examples, S, for which the proportion of examples in ci is pi, then the entropy of S is:

\[Entropy(S) = \sum_{i=1}^{n} -p_i \log_2(p_i) \]

• Boolean classification (+ and -)

\[Entropy(S) = -p_+ \log_2(p_+) - p_- \log_2(p_-) \]

Intuitively, this calculates the « disorder » in the data
Information gain

• The information gain for an attribute is the expected reduction of entropy if the examples were to be partitioned according to that attribute

• This is calculated using the following equation

\[
Gain(S, A) = Entropy(S) - \sum_{v \in \text{Values}(A)} \frac{|S_v|}{|S|} \cdot Entropy(S_v)
\]

• Given a node, you choose to split on the attribute with the greatest information gain

• No need to memorize these equations. Just be aware they exist!
Exercise

We want to predict the outcome of the next tennis match between the two top-ranked players: Federer and his main rival Nadal. From the official website of Federer, we collect the following (assumedly representative) dataset.

<table>
<thead>
<tr>
<th>Time</th>
<th>Match type</th>
<th>Court surface</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morning</td>
<td>Master</td>
<td>Grass</td>
<td>F</td>
</tr>
<tr>
<td>Afternoon</td>
<td>Grand slam</td>
<td>Clay</td>
<td>F</td>
</tr>
<tr>
<td>Night</td>
<td>Friendly</td>
<td>Hard</td>
<td>F</td>
</tr>
<tr>
<td>Afternoon</td>
<td>Friendly</td>
<td>Mixed</td>
<td>N</td>
</tr>
<tr>
<td>Afternoon</td>
<td>Master</td>
<td>Clay</td>
<td>N</td>
</tr>
<tr>
<td>Afternoon</td>
<td>Grand slam</td>
<td>Grass</td>
<td>F</td>
</tr>
<tr>
<td>Afternoon</td>
<td>Grand slam</td>
<td>Hard</td>
<td>F</td>
</tr>
<tr>
<td>Afternoon</td>
<td>Grand slam</td>
<td>Hard</td>
<td>F</td>
</tr>
<tr>
<td>Morning</td>
<td>Master</td>
<td>Grass</td>
<td>F</td>
</tr>
<tr>
<td>Afternoon</td>
<td>Grand slam</td>
<td>Clay</td>
<td>N</td>
</tr>
<tr>
<td>Night</td>
<td>Friendly</td>
<td>Hard</td>
<td>F</td>
</tr>
<tr>
<td>Night</td>
<td>Master</td>
<td>Mixed</td>
<td>N</td>
</tr>
<tr>
<td>Afternoon</td>
<td>Master</td>
<td>Clay</td>
<td>N</td>
</tr>
<tr>
<td>Afternoon</td>
<td>Master</td>
<td>Grass</td>
<td>F</td>
</tr>
<tr>
<td>Afternoon</td>
<td>Grand slam</td>
<td>Hard</td>
<td>F</td>
</tr>
<tr>
<td>Afternoon</td>
<td>Grand slam</td>
<td>Clay</td>
<td>F</td>
</tr>
</tbody>
</table>

Construct a decision tree based on these data (choose attributes at random)

The next match is a Grand slam’s match on clay court surface, and takes place in the afternoon. Predict the outcome of the match using the above decision tree.
The outcome is F if Federera wins, and N otherwise.

Federera will win (leaf node classified by majority vote)
Performance measurement

• How do we know that $h \approx f$?
 • Use theorems of computational/statistical learning theory
 • Try h on a new test set of examples
 (use same distribution over example space as training set)

Learning curve = % correct on test set as a function of training set size
Summary

- Learning needed for unknown environments, lazy designers
- Learning agent = performance element + learning element
- For supervised learning, the aim is to find a simple hypothesis approximately consistent with training examples
- Decision tree learning using information gain
- Learning performance = prediction accuracy measured on test set