Introduction

Deontic logic

- General goal
 - Design a language for reasoning about norms
 - Greek déon, ‘that which is binding, right’
- Requirements
 - Formal semantics
 - Complete axiomatic characterization
 - Consistency proof: prerequisite for implementation
- Guideline
 - Start with the simplest possible syntax
 - Reserve more complex machinery until the exact limits of the more spartan one are clear
- In this tutorial: no time, no bearers of obligations

Dyadic Deontic Logic

- Introduced by Hansson in 1969 under the label DSDL (Dyadic Standard Deontic Logic)
- Motivation: contrary-to-duty (CTD) obligations
- Full account in Åqvist (2002)

Syntax and Semantics

Layout

- Introduction
- Syntax and semantics of dyadic standard deontic logic
- Meta-theory of dyadic standard deontic logic
Language

Syntax of propositional logic

- New building blocks
 - $\Box(B/A) = B$ is obligatory, given A
 - $P(B/A) = B$ is permitted, given A

A and B are propositional letters

Semantics

- Possible worlds (i.e., valuations) are noted x, y, etc.
- A binary relation \succeq (read "greater than or equal to") is used to rank all the possible worlds x, y, ..., in terms of betterness.
- Truth-conditions
 - $\Box(B/A)$ true at x iff all the best (according to \succeq) A-worlds are B-worlds
 - Similarly for $P(B/A)$ (but with \forall replaced by \exists).

Example

- For an unconditional norm, use \top for the condition

- P dual of \Box, i.e., $P(B/A) = \neg \Box(\neg B/A)$

Example

- Meaning of $\Box A$

Example

- Meaning of $\Box A, \Box(B/\neg A)$

- Violation set of $V(x) = \text{set of norms that are violated in } x$

- Put $x \succ y$ iff $V(x) \subset V(y)$
Example

$\begin{align*}
n_1 : \Box A \\
n_2 : \Box(B/\neg A) \\
\end{align*}$

(no not)

SDL-ish binary classification of states into good/bad (green/red) ones too crude

Classes of structures

Constraints on \succeq

- Reflexivity: $x \succeq x$
- Transitivity: $x \succeq y$ and $y \succeq z$ implies $x \succeq z$
- Totalness: $x \succeq y$ or $y \succeq x$
- Limit assumption: no infinite sequence of strictly better worlds

Meta-theory

Partial pre-order
Total pre-order
Limit assumption assumed

Meta-theory

Output: set of well-formed formulae (wffs) identified

Language design

alphabet + formation rules

Output: set of well-formed formulae (wffs) identified

Semantics

Logical truth in virtue of logical form

Syntactic consequence: \vdash

Axiomatization

Syntactic consequence: \vdash

Success criterium

Completeness theorem: $\Gamma \vdash A$ iff $\Gamma \models A$
Total order case

- Axiomatization problem
 - Weak completeness result ✓
 - Spohn (1975)
 - Åqvist (1987): system \mathcal{G}
 - Strong or full completeness ✓
 - Parent (2008)
- Consistency ✓
- Decidability ✓
- Spohn (1975)

Partially ordered case

- Partial pre-order
- Allowing for conflicts between obligations
 - $\diamondsuit A, B$ for $A \succ B$ and $\sim A, \sim B$ for $A \sim B$
 - $\Box(B/A), \Box(\sim B/A)$ both in

Non-transitive case

- Call x and y equally good ($x \simeq y$) if $x \succeq y$ and $y \succeq x$

- Argument form
 - If \succ transitive, then \simeq transitive
 - \simeq not transitive
 - So \succ not transitive

- Sorites argument
 - 1000 cups of coffee: $C_1, C_2, C_3, \ldots, C_{999}$
 - $C_1 \simeq C_2 \simeq \ldots \simeq C_{999}$

Partially ordered case

- Partial pre-order
- Allowing for conflicts between obligations
- Axiomatization problem
 - Strong & weak completeness: ✓
 - Goble (2003): system DP
 - $\diamondsuit A \rightarrow \neg(\Box(B/A) \land \Box(\sim B/A))$ out (◇: 'possible')
 - Consistency ✓
 - Decidability?

Non-transitive case

- Call x and y equally good ($x \simeq y$) if $x \succeq y$ and $y \succeq x$

- Argument form
 - If \succ transitive, then \simeq transitive
 - \simeq not transitive
 - So \succ not transitive

- Modus Tollens
 - If P, then Q
 - If $\neg Q$, then $\neg P$
 - Therefore, $\neg P$

- Sorites argument
 - 1000 cups of coffee: $C_1, C_2, C_3, \ldots, C_{999}$
 - $C_1 \simeq C_2 \simeq \ldots \simeq C_{999}$
Non-transitive case

Call \(x \) and \(y \) equally good (\(x \simeq y \)) if \(x \succeq y \) and \(y \succeq x \).

Argument form
If \(\succeq \) transitive, then \(\simeq \) transitive
If \(P \), then \(Q \)
\(\simeq \) not transitive
So \(\succeq \) not transitive
Therefore, not-\(P \)

Sorites argument

1000 cups of coffes: \(C_0, C_2, C_3, \ldots, C_{999} \)

\(C_0 \simeq C_2 \simeq C_4 \simeq \ldots \simeq C_{999} \) but \(C_0 \not\simeq C_{999} \)

Non-transitive case

Preliminary result: Parent, to appear: Strong completeness result using an alternative language

Operator: \(QA \) “ideally \(A \)"

\(\Box (B/A) = \Box (QA \rightarrow B) \)

Open problems:
Axiomatize the logic using conditional obligation
Show decidability
On-going work with J. Carmo

Bibliography (1)

Bibliography (2)