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Abstract

The main contribution of this paper is a (strong) completeness result for an axiomatization of Hansson [13]’s deontic
system DSDL2, whose semantics involves a non-necessarily transitive betterness relation. Reference is made to a
deductive system put forth by Aqvist [2, 3].
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1 Introduction

This paper is concerned with so-called preferential semantics for deontic logic. These rely
on a binary relation, which ranks all possible worlds in terms of comparative goodness
or betterness. Structures of this sort seem to have made their first explicit appearance in
print with the paper of Hansson [13]. There they are used to give a semantical analysis of
contrary-to-duty (or secondary) obligations, which tell us what comes into force when some
other (primary) obligations are violated. A number of researchers have followed Hansson’s
suggestion, providing a more comprehensive investigation of the treatment of contrary-to-
duty obligations within a preference-based approach. It is not the purpose of this paper to
evaluate such a treatment. The interested reader should consult the relevant literature (see,
e.g., [3, 6,9, 16, 18, 20, 22, 26, 28)).

In what follows, I shall focus on the problem of how to axiomatize the classes of structures
outlined by Hansson in the aforementioned pioneering paper.! Previous work has almost
exclusively dealt with Hansson’s ‘official’ system DSDL3, which makes relatively strong
assumptions about the agent’s rationality. A weakly complete axiomatization of DSDL3
can be found in Spohn [24] and Aqvist [2, 3]. This weak completeness result has been
strengthened into a strong one in Parent [21]. Here my attention will be devoted to Hansson’s
weaker system DSDL2. It is much like DSDL3, except that the betterness relation is no longer
required to be transitive. The requirement of transitivity has been criticized by a number
of moral philosophers and contemporary decision theorists.? The question naturally comes
into mind if DSDL2 can be axiomatized. Aqvist [2, 3] conjectured an axiomatic basis using
an optimality operator language for dyadic deontic logic, whose symbol is ““ Q" (‘optimally’,
‘ideally’, ...).3 Unfortunately this conjecture has been settled in the negative by Ardeshir

!The systems proposed by Hansson (he confidently calls them ‘dyadic standard systems of deontic logic’ -
DSDL) are purely semantical. Syntactical issues such as questions of axiomatization are put to one side.

2Cf., e.g., Temkin [25] and Sen [23, sec. 10].

3The conditional obligation connective used by Hansson can be defined from that operator, plus other logical
apparatus (see section 2 below). The counterpart of () within conditional logic is the so-called circumstantial
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and Nabavi in a recent article in this journal [4]. There it is argued that the proposed
axiomatic basis is incomplete, i.e. that there is a formula that is not a theorem of the system
even though it is valid in the corresponding class of models. Indeed, the following is such a
sentence — this is simply Sen’s property y (see [23]) in modal logical notation:

(QANQB)— Q(AV B) v)

The main purpose of this paper is to show that completeness can be regained if (y) is
added to Aqvist’s axiom set. The completeness result is a strong completeness theorem for
the system. Moreover, the arguments in the proof carry over to the case where no specific
restrictions are put on the betterness relation.

Readers should be warned that there is far less standardization in preference semantics
than in the usual Kripke-style semantics for deontic logic, and more room for variation.
This is due to the fact that there are several factors that must be juggled all at once. In
this paper I will stick to the Aqvist account. Those who wish to get a general overview of
the possible approaches that can be taken might find it useful to consult Makinson [17] and
Goble [11, 12].

The plan of this paper is as follows. Section 2 presents the syntax, semantics and proof
theory of the framework being used. Section 3 establishes completeness using canonical
models. Section 4 lists a number of open questions that our main result raises.

2 Syntax, Semantics and Proof Theory

The syntax is generated by adding the following three unary modal operators to the syntax
of propositional logic: O (for necessity); ¢ (for possibility) ; and @ (for optimality). For QA
read: “ideally A" or “A under the best circumstances”. The set of well-formed formulae
(wifs) is defined in the straightforward way. There are no restrictions as to iterations of
deontic operators and modal ones.

The system comes with a possible worlds semantics @ la Kripke. I begin with the idea of
an H-model (‘H’ is mnemonic for Hansson), by which I understand a structure

M=(W,>,v)
in which

(i) W#£0 (W is a set of ‘possible worlds’)
(ii) =C W x W (Intuitively, > is a betterness or comparative goodness relation; ‘z >y’ can
be read as ‘world z is at least as good as world y’.)
(iii) v:Prop—P(W) (v is an assignment, which associates a set of possible worlds to each
propositional letter p).

The definition of truth at a point in a model is as usual except for the modal clauses. I use
the following evaluation rules, where z and y are in W:

M, zE=0A4 iff Vy(M,yEA)

M,zE=0A iff  Fy(M,yEA)

M,z2=QA iff Mo A&Vy(M,y=A=z>y)

Gy

operator “x” (ceteris paribus) due to Aqvist (see [1]), and further discussed by Lewis in section 2.8 of [15], and
Humberstone (see [14]) among others.
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The first two clauses are self-explanatory. The third one says that QA is true at z whenever
x is among the best (according to >) A-worlds. I shall usually drop reference to M when it
is clear what model is intended.

The syntax of Hansson’s system DSDL2 is based on a dyadic operator O(B/A) for “B
is an obligation conditionally on A’ rather than Aqvist’s monadic operator Q. Hansson’s
dyadic operator is clearly definable in the language as O(B/A)=0(QA— B) (“in all the
best A-worlds, B is true”).

The comparative goodness relation > may be constrained by suitable conditions as desired.
I shall focus on the class of (Aqvist’s terminology) Ho-models, whose betterness relation
fulfills the following two requirements:

o reflexivity:

Forall ze W,z>=x (81)
e limit assumption:
If [A]” £ then {ze [A]V:(Vye [A1")zx=y) £, (82)

where [A]M denotes the ‘truth-set’ of 4,i.e.
the set of worlds in which A holds

The class of Hy-models corresponds to Hansson’s system DSDL2. Semantic consequence,
validity and satisfiability are defined as usual relative to the latter class.

Some readers familiar with Hansson’s paper [13] might wonder why (in the introductory
remarks) DSDL2 is described as corresponding to the non-necessarily transitive case. Two
other systems are discussed by Hansson. One is DSDL1, whose betterness relation is only
reflexive. The other is DSDL3, which is obtained from DSDL2 by requiring the betterness
relation also be transitive and total (“‘for all z,y€ W, either >y or y>z"). In fact, there
is some redundancy in adding the latter requirement. For, in the finite case (i.e. when the
language is generated from finitely many propositional letters), (82) entails the total order
assumption.* It therefore makes sense to say that DSDL2 is distinguished from DSDL3 by
just letting the transitivity condition go. Note, however, that the question of whether (3;)
also entails the total order assumption in the infinite case remains an open problem.

I now briefly turn to the proof theory. The axioms are the tautologies, the S5-schemata
for O and <, and the sentences

O(A=B)—>0(QA=(QB) (RE
QA— A (T
QAANB— Q(AAB) (Ch
CA—->CQA (CD
(QANQB)— Q(AV B) (v

—_— — — ~—

The rules are modus ponens and the rule of necessitation for 0. (‘Ch’ is mnemonic for
Chernoff [8], and the abbreviation ‘CD’ is taken from Chellas [7].) The axiomatic system
comprising all instances of these axiom schemata and rules will be called simply ®. The-
oremhood, deducibility, and consistency are defined as usual relative to the latter system.

4See Parent [21, p. 192]. The argument presented there holds under the assumption that the universe contains
no worlds = and y that are duplicates in the sense that z and y agree on exactly the same wifs.
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Ardeshir and Nabavi [4] showed that (y) cannot be proved from the remaining axioms of
©. This observation settled an open problem put forth by Aqvist [2, p. 174] and [3, p. 243].
It is the problem of whether the system obtained by deleting (y) from our ® ° provides a
complete axiomatization of DSDL2.

Soundness of ® with respect to the class of Hy-models is easy to demonstrate, and may
be left to the reader. Completeness is shown in the next section using the canonical model
method. Definitions and facts relative to maximal consistent sets (mcs’s, for short) will be
taken for granted (see, e.g., Chellas [7]).

3 Completeness Result
I begin by stating formally the principle result that is to be established here.

THEOREM 3.1.
© is (strongly) complete with respect to the class of Hy-models.

Proor. The key idea is to work with a point-generated canonical model. Let W* be the set
of all mes’s of ©. Let w be a fixed element of W*. Define the canonical model M =(W,>,v)
generated by w as follows:

(i) W={ze W*:{A:0Acw}Cz};
(ii) > is the binary relation on W defined by

if either z=y
Txy
or {A:QAex}Ny#£0P

(iii) v is the valuation function defined by v(p)={x€ W:pez} for all p in Prop.

Obviously > as so defined is reflexive. Before establishing that > also fulfills the limit
assumption (82), it might help to extend the ‘truth = membership’ equation to arbitrary
formulae.

LemMA 3.2 (Truth Lemma)
For all formulae A and z in W,

MY z=Aiff Aex

Proor. By induction on A; we only show the inductive case when A= QB, supposing the
lemma to hold for B.

For the right-to-left direction, let QBe€z. By (T), Bex. Thus, by the inductive hypoth-
esis, = B. Let y€ W be such that y = B. By the inductive hypothesis again, Be€y. So, by
definition of >, x> y. This suffices for z}= QB.

For the left-to-right direction, we argue contrapositively. We assume that @B ¢z, and
prove that zp= @QB. If x|~ B, we are done. So assume z = B. By the inductive hypothesis,
Bez. There are two possibilities:

Case 1: PA st. QAcx. Put vy~ ={A:0Acw}U{QB}. Note that {A:JAcw)#H® since T €
{A:0A € w} because OT € w by necessitation. Now suppose, to reach a contradiction, that

5Here I am referring to Aqvist’s system S5‘P§m0+ every B; with 1=0,1,2,3.
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y~ is not consistent. Then for m >1 there are sentences A, ..., A,, in {A:0A € w} such that
F(A1A...AA)— —QB. By S5 we get H(OA;A...AOA4,,) > O—=@QB. For each A; (1<i<m),
OA; € w; hence DA A...AOA,, € w, and so O=QB e w, i.e., ~> QB e w. So by (CD) =CBe€ w,
i.e., D=Bew. But then by construction =B € x, contrary to the consistency of z. Therefore
y~ must be consistent. By Lindenbaum’s lemma, y~ has a maximal consistent extension, call
it y. Obviously ye W and Bey by the (T) schema. The inductive hypothesis gives y = B.
From supposition {A: QA€ z}=0, and so a fortiori {A: QA€ z}Ny=0@. Furthermore, z#y
because @Bey and QB ¢x. So x % y, which suffices for z = QB.

Case 2: 3A s.t. QAex. The set 2~ ={A:04cw}U{—A: QAecz}U{B} is consistent. For
suppose otherwise. Then for m,n>1 there are sentences A4, ..., A, in {A:0A€w} and
sentences =By, ..., =B, in {—A: QA €z} such that

F(AAAAuA=BA...A—B,)—>—B
Equivalently,

F(AA.AAL)— (B— (B1V...vB,))
By S5,

F(OA;A...AO4,,)—O(B— (B, V...VB,))

For each A; (1<i<m), OA; € w; hence OA; A...AOA,, €w, and thus O(B— (B;V...VB,)) €
w. Hence by the properties of O again,

O((B1V...vB,)AB)=B)ew

Using (RE) it follows that
O(Q((BV...vB,)AB)=QB)ew

So by construction

Q((B,v..VvVB,)AB)=QBex
But QB¢ zx. So

Q((B,v..VB,)AB) ¢z

Now, for each B; (1<i<n), @B, €z. In particular, QB;, @Bs € z; hence QBy A QBy € z. A first
application of (y) yields Q(B;V Bs) €z, so that Q(B;V By) A @Bsex. A second application
of (y), then, yields Q(B;V ByV B3) € x. The number of B;’s is finite.® Reiterating this argu-
ment n times we arrive at the result that Q(ByV...v B,)€x. But Bex; hence Q(B V...V

B,) A Be z. Using (Ch) we may further move B inside the scope of @) obtaining the contradic-
tion that Q((ByV...V B,)AB)€x. Therefore z~ is consistent, and has a maximal consistent

6Tt might be worth clarifying why. This follows at once from the standard characterization of deducibility and
consistency in terms of theoremhood. If there is a proof that 2~ is inconsistent, it starts from finitely many premises.
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extension, z. It is clear that z€ W and B € z, and thus the inductive hypothesis yields z = B.
Choose any A such that QAe€x — we can make such a choice since we are assuming that
x contains at least one sentence of this form. By construction —A €z, and thus A€z by
consistency of z. This shows that {A: QA e€x}Nz=@. This also shows that x# z since Aex
by the (T) schema. So = # z, and thus z [~ @B as required. This establishes Lemma 3.2. |

It remains to verify that > fulfills the limit assumption (8,). Suppose [A]"" ##, and let x be
in [A]M". By Lemma 3.2, Acz. Put y~ ={B:0Bew}U{QA}. A similar argument as before
— it rests essentially on (CD) — yields that y~ is consistent, and has a maximal consistent
extension, y. Obviously, y€ W, and A € y given the (T) schema. Using Lemma 3.2, it follows
that y=A. Let z be such that z}=A. By Lemma 3.2, A€z, and so by definition of >, y>z
since QA €y. This shows that (8;) is met.

Theorem 3.1, the principle result of this paper, now follows in the usual way. The argument
is standard. Details are omitted. |

Let us now briefly consider the system A obtained by just removing (CD) from our ©.
As can easily be verified, A is sound with respect to the class of all H-models, and the class
of H-models in which the betterness relation is reflexive (DSDL1). For completeness with
respect to the first class of models, we can adapt the argument for Theorem 3.1 as follows.
Let M¥=(W,P,v) where

e IV is the set of all mcs’s of A containing every wif A for which OA is in w;
e P is defined thus: zPy if and only if {A: QA€ z}Ny#0;
e v is as usual.

To verify that Lemma 3.2 holds for A, we need only run through the proof of the modal part
of the inductive step again, making one small variation. Note, first, that in the verification
of the left-to-right direction, there is no more need to show that z# y and x # z. Then, when
handling case 1 above, put y~={A:0Ae€w}U{B}. The consistency of y~ follows at once
from y~ Cz (and the consistency of z).

It is notable that the proposed method, which works so smoothly for DSDL2 and the
class of all H-models, cannot be extended to DSDL1. Let us see why not. First, there is
no guarantee that P as just defined is reflexive. The simplest way around is to work with
the reflexive closure of P, as we did in the proof of Theorem 3.1. But, then, when re-
running the proof of Lemma 3.2, we get stuck on case 1, because there is no way to ensure
that z#£y2{A:0A4€w}U{B}. To rule out case 1 from the outset, it suffices to work with a
submodel of the original canonical model, obtained by just removing from W all the mcs’s
that do not contain any formula of the form QA.” But, then, the argument for case 2 does
not go through, because there is in general no guarantee that the mcs z contains one wif
of this form. In other words, there is no guarantee that z is part of the submodel we are
working with. Thus here is an unexpected difficulty.

4 Open Questions

e Can an analogous completeness result be established for DSDL1?
e Does the system DSDL2 have the finite model property?

"Essentially the same trick is used by Bezzazi et al. [5, p. 615-616] in the context of preference-based semantics
for non-monotonic logics, but for different purposes.
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e Can a similar completeness result be proven for Aqvist’s system F for conditional obli-

gation (see [3, p. 248]), or one close to it?
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